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Abstract— Faults are related to failures and they do not have much power for indicating a higher quality or a better system above the 
baseline that the end-users expect.The system faults are the defects that brim in executable files. Conventional approaches employ the 
experts to navigate directly into the source code errors. However expansion in system size grew the complexity of task exponentially and 
generated a scope for new methods in fault classification.Experimental studies have shown that miniature bugs are reason of faults. In a 
considerable size of system the faulty labels and non-faulty labels are marked during modular phase. This paper presents the adaptive-
neuro fuzzy c-means clustering for fault classification via fuzzy c-means clustering.Experimental studies confirmed that only a small portion 
of software modules cause faults in software systems.The NASA pc1 database is used for experiments and the results in this approach is 
enhanced than previous clustering based approaches.  

Index Terms— Adaptive-neuro fuzzy c-means clustering, Data Classification, Defect Prediction, Fault Prediction, Fault proneness, Fuzzy 
clustering, Software Project Success. 
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1 INTRODUCTION                                                                     
OFTWARE reliability is the essential parameter in decision 
of software standard classification [1]. The software fault 
prediction technique characterizes the performance of 

software’s performance in dependent field’s application. The 
program attributes is scaled by quantitative representation 
from software metrics that play crucial role in detecting the 
software quality based on evaluation parameters [2]. Perlis et 
al. in [2] experimented and found relationship between attrib-
utes modified by faults and complexity metrics direct and true 
in test and validation [3]. In late 20th century the immense 
research in this field was oriented towards the prediction of 
relationship between faults detected and complexity metrics. 
Finding the necessary metrics depends on multiple variable 
models [4] in addition to fault size. 

 
A software system is the composition of number of modules 
dependent on each other. Any module with faults in its func-
tionality adverse the output and lowers its reliability. In this 
scenario, the detection of faulty modules in early stage (devel-
opment stage) is mandatory to minimize faults in operation 
phase. Hence, the systems are classified in two categories i.e. 
with faulty/non-faulty modules in their testing phase. This 
classification diverts the focus to neutralize faulty sections to 
achieve high reliability and accuracy. 

 
A software fault or error is reason of failure in execution stage. 

The error message at each stage of executing the program in-
dicates the fault in programming. Generally speaking the er-
rors are the logical errors in software program. The prediction 
models of software fault proneness technique estimate the 
amount of faulty modules in a program. The software metrics 
are the attributes for process, execution and product of the 
software system.Various other attributes like defect density 
normalized work, fault proneness, maintainability, reusability 
etc. determines the quality of software. 
Software metrics data are responsible to report about the spe-
cific attributes for the calculation of modules or functions for 
the whole software. These attributes are the inputs for self-
learning model when co-related with weighted error or defect 
data. The learning mode is a system that employs the previous 
results of performance measure to upgrade itself so as to en-
hance the performance in comparison with previous results. 
The learning system is modeled in two phases of categoriza-
tion in its working mechanism i.e. the testing dataset and the 
training data set. Some predictor functions in software fault 
proneness systems simulate the Multilayer Perceptron and 
Decision Tree algorithm for training and evaluation of effects 
with respect to testing data set. 

2 RELATED REVIEW 
In software systems failures, faults and defects are terms co-
related to each other with visible difference in their definitions 
[5]. However for researchers, according to IEEE Software 
Glossary for Terminologies of Software Engineering, a distinc-
tion is mandatory in these terms [7]. Error is considered to be 
human mistake (in reference with Glossary) responsible to 
generate undesired results. The error hinders the software or 
its component to produce desirable output constrained to its 
parameters within specific requirements. A fault [5] is the de-
fect of the system proposed in terms of system engineering 
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and hardware [7] and is parallel to error responsible for glitch 
in simulations for corresponding platform. In this research a 
fault in the system is associated with mistakes that are diag-
nosed either in development phase or by testing units and 
system levels. In software systems, a term “software failure” is 
conventional for the systems with inconsistent output, but in 
this paper term “fault” or “faulty modules” is accounted for 
the reason that the anomalies responsible for failure are 
tracked in coding phase itself. The faulty modules of the da-
taset considered in this paper are pre-released faults [6]. 
Software systems are versatile to most of technological/non-
technological advances of the society. Creating software with 
100% efficiency is an imaginary thought hence software fault 
prediction got attention by a variety of researchers. Software 
quality is verified in distinct parameters like formal verifica-
tion, inspection, fault tolerance and testing. Automated meth-
ods employs software metrics [8] [9] of previous versions to 
develop a prediction model. Fault prediction is the union of 
two steps i.e. training and prediction. Training phase is based 
on the metrics (method-level or class metrics) model devel-
oped by evaluation parameters of earlier software versions. 
This metrics predicts the fault-proneness of modules liable to 
be faulty for the upgraded versions of software. In literature 
survey the methods described are supervised methods that 
have classified data of faulty modules. Today the software 
fault detection systems are designed with 85% accuracy in 
their analysis subjected to dataset considered and evaluation 
parameters taken into account. This level of accuracy is appli-
cable in economical world of software industry. 

The fault prediction techniques are sourced by means 
of historical data. Research work suggest that the system un-
der development is prone to fault if the software metrics 
measures similar properties of software and faulty modules 
developed and sensed previously in same environment [10]. 
The conventional applications provide us a platform for fault 
proneness and methodology for techniques for fault predic-
tion and mitigation. The supervised learning methods stated 
in literature are combined study of fault data and software 
metrics that implements different learning algorithms. In late 
90’s and starting years of 21st century many techniques sur-
faced as the solution for this problem. Neural networks [11, 12, 
13], Genetic Algorithm [14] were developed for large datasets 
to generate the generalized relation. Dampster-Shafer Net-
works [15] believed the data can be treated as faulty depend-
ing on combined evidence from different sources. Naïve Bayes 
[16, 17] stated that the data may be considered as faulty irre-
spective of its nature, if its parameters match the predefined 
threshold for faulty systems. Decision trees [18] map the ob-
servations to predict the possible outcomes. Artificial Immune 
Systems [19] is an appreciated algorithm as it defines the cog-
nitive patterns once trained to update data. Support Vector 
Machines [20, 21] employs associated learning algorithm used 
in classification to recognize and analyze datasets. Case-based 
Reasoning [22] keeps the track of solutions and detects prob-
lems based on these results. Ant-Colony Optimization [23] is 
probabilistic approach to minimize the computational prob-
lems by graphical method. Fuzzy logic [24] is the clustering 
algorithm to collect fault data with high accuracy. Basili et al. 
1996 [25] proposed the logistic regression that employs do-

main specific knowledge for determination of software metrics 
(input) and software fault-proneness (output) relation. 

The algorithms are evaluated for their strength and weak-
nesses by evaluation parameters in experimental setups. Re-
cently Metrics Data Program NASA IV&V facility made its 
data available for public research. Yue Jiang [26] in 2008 stud-
ied the model evaluation techniques in software engineering 
studies to comprehend strength and weakness of performance 
evaluation techniques. Authors in [27] stated that, the compar-
ison of fault-prone models is a multi dimensional problem. No 
single model or the modeling technique proves to be the best 
for all possible uses in software quality assessment. The su-
pervised learning approaches are constrained to the 
knowledge of faulty data. In case the faulty data is undeter-
mined, new methods of classification surfaced. A Ripper 
Down Rule (RIDOR) algorithm [27] [28] generates a default 
rule, for the exceptions to be generated in a tree like structure 
until according to rule set all training instances are classified 
correctly. Hassan Najadat and Izzat Alsmadi [29] modified 
this rule in terms of accuracy and effectiveness (i.e. generating 
less number of rules). The enhanced RIDOR algorithm imports 
benefits of CLIPER algorithm and RIDOR. The attributes are 
encoded as symbols and are compacted or merged to only 
two. The method proved to be efficient on a number of da-
tasets considered by authors. Yue Jiang, Bojan Cukic and Tim 
Menzies [30] experimented to find the suitability of metrics in 
early development to find fault prone software module. Also 
authors demonstrated a predictive module using metrics to 
characterize textual requirements. The model was tested on 5 
datasets. The early lifecycle metrics plays significant role in 
project management but the requirement metrics is unable to 
predict data itself. 

3 METHODOLOGY 
The Fuzzy C-Means clustering for classification of faults in 
software fault prediction is conventional approach. The Fuzzy 
C-Means clustering method [31] is the reference of adaptive 
method that improve the performance index in faults classifi-
cation sector for software systems. The enhancement of this 
method is the collective co-relation of feed-forward neural 
network [33] with fuzzy c-means to outperform the assign-
ment of mean deviation and absolute error to a cluster to min-
imize the distance for fault prediction. 

The data of PC1 (NASA) is input to the system. For the 
Fuzzy C-Means to cluster the faulty data requires pre-
processing of data to minimize time consumption. The output 
of C-Means clustering is stored for comparison. The output of 
C-Means is fed to adaptive Neuro-Fuzzy C-Means clustering 
algorithm. The algorithm tuned by Neural Network trains the 
data and improve performance index. The output of algorithm 
is compared with output of Fuzzy C-Means in terms of accu-
racy, reliability, RMSE and MAE. 

TABLE 1 
 PC1 DATASET (SOURCE: NASA) 

 Faulty Infor-
mation 

Faultless 
Information 

PC1 Da- 23 77 
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taset 

 
3.1 Data Pre-processing 
This paper refers PCI dataset as input. The dataset is the 
matrix ( ) with distinguish features.  

 
Xij is the initial PC1 data matrix. 
A is the size of dataset. 
B is the number of distinguish features. 

       (1) 
 

Where  is  
 is the number of elements in sample 
 is the random value of B taken from a finite data 

set . 
 is the standard deviation. 

     (2) 
Where t is the mean value of distinguish features 
B =  
From eq. (1) and eq. (2) the new preprocessed dataset  
will be (matrix representation).: 

     (3) 
Where s is the standard deviation and 
t is the mean of distinguish features. 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

Fig. 1. Flow Diagram of FCM 

3.2 Fuzzy C-Means Clustering 
The Fuzzy C-Means Clustering (FCM) also called ISODATA is 

the clustering algorithm executed for determination of each 
point’s degree that belongs to cluster. Generally, the restrictive 
constraint scale the performance of various hard clustering algo-
rithms to cluster original data into different cluster groups. The 
Bezdek [32] proposed the Fuzzy C-Means Clustering to improve 
the Hard C-Means Clustering (HCM) in which the overlapping 
between different groups takes place. 
 
The reference Fuzzy C-Means clustering considered is studied 
in the work of Zhiwei Gao et al. [31]. In this method the out-
put vector of preprocessing (eq. 3) taken as input 
( ) are classified in c number of clusters 
and each clustering center is calculated. The primary differ-
ence that outdates the HCM against FCM is fuzzy partition. 
This partition is responsible for determination of the degree by 
which every data point belongs to every group using the 
membership function in the range 0-1. ‘U’ the element of 
membership matrix is allowed to vary in range 0 to 1, and also 
derives the Fuzzy partition. Based on the rules of normaliza-
tion the total of membership elements in a data set is equal to 
1 [31]. 

   (4) 
Where, c is number of clusters. 
The objective function (or cost function) of FCM is the general-
ization of equation: 

  (5) 

where,  is between 0 and 1, ci is the clustering centers of 

fuzzy group , is the Euclidean distance be-
tween the ith clustering centers and the jth data point, xj is the 
jth data point,  is weighted index.  
To obtain the required parameters new objective functions are 
structured that makes equation (5) into minimum 

 
  (6) 

  
Where  is the Lagrange multiplier of n inhibit-
ed formula described in equation (4). The required values that 
minimize the equation (5) are as follows: 

     (7) 

   (8) 

Fuzzy C-Means becomes the simple iterative process by virtue 
of the equations (7) and (8). The steps below [31] are struc-
tured to calculate the center ci and membership matrix U 

Step1: Select a number anonymously in the range 0 and 1 for 
calculation of membership matrix U and satisfy the number in 
eq (4). 

Step2: Calculating the value of clustering centers ci from eq 
(4). 

Data Preproessing 

Calculation of Objec-
tive Function 

Calculation of cluster 
centers and member-

ship functions 

Update the objective 
function 
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Step 3: In accordance with equation (5), calculate the cost func-
tion. The iteration in algorithm will be terminated once it is 
less than certain value of threshold in comparison with change 
in last cost function value. 

Step 4: Calculate the next matrix U (based on eq. 8) and return 
to step 2. 

Finally it can be concluded that weighted index m and cluster 
c are required in FCM algorithm. m decides the flexibility of 
algorithm i.e. if it high in value the cluster effect will be de-
prived and if in case if it is too small, the algorithm will be 
near to Hard C-Means Clustering (HCM). If the condition c>1 
holds true, the c will be far less than total number of cluster 
samples. 

4 ADAPTIVE NEURO FUZZY INFERENCE 
The adaptive neuro fuzzy inference system is reasoning fuzzy 
system that is trained by neural network for computation of 
membership function parameters. The method tracks the in-
put output data as a non-linear relation with inputs x,y and f 
as output. 
 

 
 
 
 
 

 
 
 
 
 

 
Figure 2: Adaptive Neuro Fuzzy Inference System Architecture [33] 

By the training of system to a number of epochs the 
knowledge base is developed. The fuzzy inference system is 
defined in following steps for minimization of error rate.  
Layer 1: In this layer the degree of membership is upgraded in 
reference to the parameters of fuzzy sets [34].  

    (9) 

    (10) 
Layer 2: In this layer the fuzzy value of inputs is calculated. In 
the range [0, 1] the membership value of fuzzy set is deter-
mined [34]. 

   (11) 
Layer 3: this layer normalizes the firing strength [34]. 

   (12) 

Layer 4: the input of this layer is the fuzzy output of layer 2 
while the output is a single number. The parameters are de-
fined by eq. 13 [35]. 

   (13) 
5. Layer 5: the overall output is computed by summation of 
each incoming signal [34]. 

     (14) 
 

 
Fig 3. Flow Diagram of Adaptive Neuro Fuzzy C-Means Clustering 

5 EXPERIMENTAL SETUP     
Software fault detection by Fuzzy C-Means Clustering: 
The dimension of data in matrix form is (100x21) indicating 
the 100 cases of faulty/non-faulty modules with 21 properties 
of each. The methodology pre-process the data (calculation of 
standard deviation and mean) is done for each software 
stream. This reduces the data matrix to (100x21) i.e. 100 cases 
with 2 properties of each. 
In original dataset Class Distribution: the class value (defects) 
is discrete  

% false:   77 = 6.94% 

% true:  1032 = 93.05% 

The pre-processed data is fed to Fuzzy C-Means clustering to 
obtain 25 clusters. The first cluster of data is labeled as non-
faulty while remaining 24 fields indicates faulty data. Fuzzy 
C-Means finds the location of cluster center and assigns each 
stream to a cluster centre.For testing the standard deviation 

Data Set of NASA (100*21) values 

Preprocessing (100*2) by Mean and 
Standard Deviation 

FCM (Formation of 25 Centers) 

FIS generation of Data from FCM 

Train FIS (Training of data using Feed 
forward Neural Network) 

Trained FIS (This FIS takes the input 
and provides Result) 

 

 

 

  

 

Layer 2 Layer 

 
 

Layer 

 
Layer 

 
Layer 

 

Y 

X 

 

A
 

A
 

Π 

B
1 

B
 

Π 

N 

N 

A
 

A
 

𝚺 IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014                                                                                                    296 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6 Data Input (PC1 database with attributes)

and mean of stream is calculated, assigned to cluster from 
which it shows minimum distance. The stream is classified as 
faulty if the cluster is faulty else vice-versa. 
 
Software Fault Detection Using Adaptive Neuro-Fuzzy C-
Means Clustering: 
The dimension of data in matrix is again (100x21) which indi-
cated 100 cases with 21 properties each. The pre-processing of 
data reduces the matrix to the order (100x2) i.e. 100 cases with 
2 properties of each.On basis of above a fuzzy inference sys-
tem is generated using FCM. Both systems till this point share 
same level of accuracy. This inference system is fed to feed 
forward neural network with training data. In training stage 
neural network modifies the structure of fuzzy inference sys-
tem to obtain high level of accuracy. 

6 RESULTS AND COCLUSION 
 
 
 

 
 
 
 
 
 
 
 

Fig. 4. Graphical representation of PC1 data distribution of faulty and non-
faulty modules 

In training dataset taken as input for Class Distribution: the 
class value (defects) is discrete in nature.  
%    data with positive attribute:   23 = 23% 
%    data with negative attribute:  77 = 77% 

 
Fig. 5. Adaptive Neuro-Fuzzy Inference Model for PC1 Dataset with 3 

Rules. 

 
Fig.6. Membership Function Plot of Fuzzy Inference System 

 
Fig.7. Membership Function Plot of Adaptive Neuro Fuzzy Inference Sys-

tem 

TABLE 2 
 COMPARATIVE TABLE BASED ON SIMULATION FACTORS FOR FUZZY 
C-MEANS AND ADAPTIVE NEURO FUZZY C-MEANS CLUSTERING 

 Fuzzy C-
Means 

Adaptive 
Neuro Fuzzy 

C-Means 
Accuracy 77% 91% 

Reliability 72.98% 73.98% 

RMSE 0.068 0.09 

MAE 0.23 0.13 

This paper empirically evaluates and compares the perfor-
mance of Fuzzy C-Means clustering technique and adaptive 
Neuro-Fuzzy C-Means clustering for software fault prediction. 
The platform for the testing is MATLAB 2010A on the PC1 
testing database. The proposed Adaptive Neuro-Fuzzy C-
Means Clustering based prediction technique shows 91% ac-
curacy in results. We observe that the implementation that has 
achieved a better performance.C-Means clustering for the pre-
diction of faulty prone classes. It can be further accomplished 
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that the Adaptive Neuro-Fuzzy C-Means clustering is satisfac-
tory in finding the faulty/fault-free area. 
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