International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014

ISSN 2229-5518

292

Analysis of Software Fault and Defect Prediction
by Fuzzy C-Means Clustering and Adaptive
Neuro Fuzzy C-Means Clustering

Pushpavathi T.P, Suma V, Ramaswamy V

Abstract— Faults are related to failures and they do not have much power for indicating a higher quality or a better system above the
baseline that the end-users expect.The system faults are the defects that brim in executable files. Conventional approaches employ the
experts to navigate directly into the source code errors. However expansion in system size grew the complexity of task exponentially and
generated a scope for new methods in fault classification.Experimental studies have shown that miniature bugs are reason of faults. In a
considerable size of system the faulty labels and non-faulty labels are marked during modular phase. This paper presents the adaptive-
neuro fuzzy c-means clustering for fault classification via fuzzy c-means clustering.Experimental studies confirmed that only a small portion
of software modules cause faults in software systems.The NASA pc1l database is used for experiments and the results in this approach is

enhanced than previous clustering based approaches.

Index Terms— Adaptive-neuro fuzzy c-means clustering, Data Classification, Defect Prediction, Fault Prediction, Fault proneness, Fuzzy

clustering, Software Project Success.

1 INTRODUCTION

OFTWARE reliability is the essential parameter in decision

of software standard classification [1]. The software fault

prediction technique characterizes the performance of
software’s performance in dependent field’'s application. The
program attributes is scaled by quantitative representation
from software metrics that play crucial role in detecting the
software quality based on evaluation parameters [2]. Perlis et
al. in [2] experimented and found relationship between attrib-
utes modified by faults and complexity metrics direct and true
in test and validation [3]. In late 20th century the immense
research in this field was oriented towards the prediction of
relationship between faults detected and complexity metrics.
Finding the necessary metrics depends on multiple variable
models [4] in addition to fault size.

A software system is the composition of number of modules
dependent on each other. Any module with faults in its func-
tionality adverse the output and lowers its reliability. In this
scenario, the detection of faulty modules in early stage (devel-
opment stage) is mandatory to minimize faults in operation
phase. Hence, the systems are classified in two categories i.e.
with faulty/non-faulty modules in their testing phase. This
classification diverts the focus to neutralize faulty sections to
achieve high reliability and accuracy.

e Pushpavathi T.P, JAIN University, Bangalore, India.
E-mail: acepushpa@yahoo.co.in

o Suma V, Dayanandsagar College of Engineering, Bangalore, India.
E-mail: sumavdsce@gmail.com

o Ramaswamy V, SASTRA University, Srinivasa Ramanujan Cen-
tre, Kumbakonam, Tamilnadu,India,
E-mail: researchwork04@gmail.com

A software fault or error is reason of failure in execution stage.

The error message at each stage of executing the program in-
dicates the fault in programming. Generally speaking the er-
rors are the logical errors in software program. The prediction
models of software fault proneness technique estimate the
amount of faulty modules in a program. The software metrics
are the attributes for process, execution and product of the
software system.Various other attributes like defect density
normalized work, fault proneness, maintainability, reusability
etc. determines the quality of software.

Software metrics data are responsible to report about the spe-
cific attributes for the calculation of modules or functions for
the whole software. These attributes are the inputs for self-
learning model when co-related with weighted error or defect
data. The learning mode is a system that employs the previous
results of performance measure to upgrade itself so as to en-
hance the performance in comparison with previous results.
The learning system is modeled in two phases of categoriza-
tion in its working mechanism i.e. the testing dataset and the
training data set. Some predictor functions in software fault
proneness systems simulate the Multilayer Perceptron and
Decision Tree algorithm for training and evaluation of effects
with respect to testing data set.

2 RELATED REVIEW

In software systems failures, faults and defects are terms co-
related to each other with visible difference in their definitions
[5]. However for researchers, according to IEEE Software
Glossary for Terminologies of Software Engineering, a distinc-
tion is mandatory in these terms [7]. Error is considered to be
human mistake (in reference with Glossary) responsible to
generate undesired results. The error hinders the software or
its component to produce desirable output constrained to its
parameters within specific requirements. A fault [5] is the de-
fect of the system proposed in terms of system engineering

IJSER © 2014
http://www.ijser.org

http://www.ijser.org/
mailto:sumavdsce@gmail.com
mailto:researchwork04@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014

ISSN 2229-5518

and hardware [7] and is parallel to error responsible for glitch
in simulations for corresponding platform. In this research a
fault in the system is associated with mistakes that are diag-
nosed either in development phase or by testing units and
system levels. In software systems, a term “software failure” is
conventional for the systems with inconsistent output, but in
this paper term “fault” or “faulty modules” is accounted for
the reason that the anomalies responsible for failure are
tracked in coding phase itself. The faulty modules of the da-
taset considered in this paper are pre-released faults [6].
Software systems are versatile to most of technological/non-
technological advances of the society. Creating software with
100% efficiency is an imaginary thought hence software fault
prediction got attention by a variety of researchers. Software
quality is verified in distinct parameters like formal verifica-
tion, inspection, fault tolerance and testing. Automated meth-
ods employs software metrics [8] [9] of previous versions to
develop a prediction model. Fault prediction is the union of
two steps i.e. training and prediction. Training phase is based
on the metrics (method-level or class metrics) model devel-
oped by evaluation parameters of earlier software versions.
This metrics predicts the fault-proneness of modules liable to
be faulty for the upgraded versions of software. In literature
survey the methods described are supervised methods that
have classified data of faulty modules. Today the software
fault detection systems are designed with 85% accuracy in
their analysis subjected to dataset considered and evaluation
parameters taken into account. This level of accuracy is appli-
cable in economical world of software industry.

The fault prediction techniques are sourced by means
of historical data. Research work suggest that the system un-
der development is prone to fault if the software metrics
measures similar properties of software and faulty modules
developed and sensed previously in same environment [10].
The conventional applications provide us a platform for fault
proneness and methodology for techniques for fault predic-
tion and mitigation. The supervised learning methods stated
in literature are combined study of fault data and software
metrics that implements different learning algorithms. In late
90’s and starting years of 21st century many techniques sur-
faced as the solution for this problem. Neural networks [11, 12,
13], Genetic Algorithm [14] were developed for large datasets
to generate the generalized relation. Dampster-Shafer Net-
works [15] believed the data can be treated as faulty depend-
ing on combined evidence from different sources. Naive Bayes
[16, 17] stated that the data may be considered as faulty irre-
spective of its nature, if its parameters match the predefined
threshold for faulty systems. Decision trees [18] map the ob-
servations to predict the possible outcomes. Artificial Immune
Systems [19] is an appreciated algorithm as it defines the cog-
nitive patterns once trained to update data. Support Vector
Machines [20, 21] employs associated learning algorithm used
in classification to recognize and analyze datasets. Case-based
Reasoning [22] keeps the track of solutions and detects prob-
lems based on these results. Ant-Colony Optimization [23] is
probabilistic approach to minimize the computational prob-
lems by graphical method. Fuzzy logic [24] is the clustering
algorithm to collect fault data with high accuracy. Basili et al.
1996 [25] proposed the logistic regression that employs do-

293

main specific knowledge for determination of software metrics
(input) and software fault-proneness (output) relation.

The algorithms are evaluated for their strength and weak-
nesses by evaluation parameters in experimental setups. Re-
cently Metrics Data Program NASA IV&V facility made its
data available for public research. Yue Jiang [26] in 2008 stud-
ied the model evaluation techniques in software engineering
studies to comprehend strength and weakness of performance
evaluation techniques. Authors in [27] stated that, the compar-
ison of fault-prone models is a multi dimensional problem. No
single model or the modeling technique proves to be the best
for all possible uses in software quality assessment. The su-
pervised learning approaches are constrained to the
knowledge of faulty data. In case the faulty data is undeter-
mined, new methods of classification surfaced. A Ripper
Down Rule (RIDOR) algorithm [27] [28] generates a default
rule, for the exceptions to be generated in a tree like structure
until according to rule set all training instances are classified
correctly. Hassan Najadat and Izzat Alsmadi [29] modified
this rule in terms of accuracy and effectiveness (i.e. generating
less number of rules). The enhanced RIDOR algorithm imports
benefits of CLIPER algorithm and RIDOR. The attributes are
encoded as symbols and are compacted or merged to only
two. The method proved to be efficient on a number of da-
tasets considered by authors. Yue Jiang, Bojan Cukic and Tim
Menzies [30] experimented to find the suitability of metrics in
early development to find fault prone software module. Also
authors demonstrated a predictive module using metrics to
characterize textual requirements. The model was tested on 5
datasets. The early lifecycle metrics plays significant role in
project management but the requirement metrics is unable to
predict data itself.

3 METHODOLOGY

The Fuzzy C-Means clustering for classification of faults in
software fault prediction is conventional approach. The Fuzzy
C-Means clustering method [31] is the reference of adaptive
method that improve the performance index in faults classifi-
cation sector for software systems. The enhancement of this
method is the collective co-relation of feed-forward neural
network [33] with fuzzy c-means to outperform the assign-
ment of mean deviation and absolute error to a cluster to min-
imize the distance for fault prediction.

The data of PC1 (NASA) is input to the system. For the
Fuzzy C-Means to cluster the faulty data requires pre-
processing of data to minimize time consumption. The output
of C-Means clustering is stored for comparison. The output of
C-Means is fed to adaptive Neuro-Fuzzy C-Means clustering
algorithm. The algorithm tuned by Neural Network trains the
data and improve performance index. The output of algorithm
is compared with output of Fuzzy C-Means in terms of accu-
racy, reliability, RMSE and MAE.

TaBLE 1
PC1 DATASET (SOURCE: NASA)
Faulty Infor- Faultless
mation Information
PC1 Da- 23 77

IJSER © 2014
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014

ISSN 2229-5518
‘ taset ‘

3.1 Data Pre-processing

This paper refers PCI dataset as input. The dataset is the
matrix (m x n) with distinguish features.

X;=AXB

Xijj is the initial PC1 data matrix.

A is the size of dataset.

B is the number of distinguish features.

1 _ 1
s= [LTn(q %) g
Where 7 is iZ}Ll X
n is the number of elements in sample

x; is the random value of B taken from a finite data

set xq, X9, ., Xy

s is the standard deviation.

¢ = Fatdatta, @

T

Where t is the mean value of distinguish features
B=x,,x5,...,%,
From eq. (1) and eq. (2) the new preprocessed dataset
will be (matrix representation).:

Py =sXt ®)

Where s is the standard deviation and

t is the mean of distinguish features.

Data

\4

Data Preproessing

A 4

Calculation of Objec-

tive Function

A 4

Calculation of cluster
centers and member-

ship functions

\ 4

Update the objective
function

Fig. 1. Flow Diagram of FCM

3.2 Fuzzy C-Means Clustering
The Fuzzy C-Means Clustering (FCM) also called ISODATA is

294

the clustering algorithm executed for determination of each
point’s degree that belongs to cluster. Generally, the restrictive
constraint scale the performance of various hard clustering algo-
rithms to cluster original data into different cluster groups. The
Bezdek [32] proposed the Fuzzy C-Means Clustering to improve
the Hard C-Means Clustering (HCM) in which the overlapping
between different groups takes place.

The reference Fuzzy C-Means clustering considered is studied
in the work of Zhiwei Gao et al. [31]. In this method the out-
put vector of preprocessing (eq. 3) taken as input

(®: for =12 ...,n}) are classified in ¢ number of clusters
and each clustering center is calculated. The primary differ-
ence that outdates the HCM against FCM is fuzzy partition.
This partition is responsible for determination of the degree by
which every data point belongs to every group using the
membership function in the range 0-1. ‘U" the element of
membership matrix is allowed to vary in range 0 to 1, and also
derives the Fuzzy partition. Based on the rules of normaliza-
tion the total of membership elements in a data set is equal to
1[31].
Xiauy=LVj=1..,n @
Where, c is number of clusters.

The objective function (or cost function) of FCM is the general-
ization of equation:

JW, ey, €)= Eiy] = Lea L ulfd])

U is between 0 and 1, c; is the clustering centers of
[di; = ||es— @4, . .

fuzzy group !, "YU le. i | is the Euclidean distance be-

tween the i clustering centers and the jt data point, x; is the

jt data point, € [Loo] 55 weighted index.

To obtain the required parameters new objective functions are
structured that makes equation (5) into minimum

JU,€ps ey €oyy s)
=JW,cyur€) + X0y 4 (Xeoquy; — 1) ©)

=27 u??d;?j + 214, [:Elz?=1uz'j - 1]

Where Apj = 12,.,m is the Lagrange multiplier of n inhibit-
ed formula described in equation (4). The required values that
minimize the equation (5) are as follows:
¢ = (Z?:z*‘fs‘m:f)

b j=1Hij (7)

fyj = 1/ Bima(dyy /) /) ®)

where,

Fuzzy C-Means becomes the simple iterative process by virtue
of the equations (7) and (8). The steps below [31] are struc-
tured to calculate the center c¢; and membership matrix U

Stepl: Select a number anonymously in the range 0 and 1 for
calculation of membership matrix U and satisfy the number in

eq (4).

Step2: Calculating the value of clustering centers ¢; from eq

(4)-

IJSER © 2014
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014

ISSN 2229-5518

Step 3: In accordance with equation (5), calculate the cost func-
tion. The iteration in algorithm will be terminated once it is
less than certain value of threshold in comparison with change
in last cost function value.

Step 4: Calculate the next matrix U (based on eq. 8) and return
to step 2.

Finally it can be concluded that weighted index m and cluster
¢ are required in FCM algorithm. m decides the flexibility of
algorithm i.e. if it high in value the cluster effect will be de-
prived and if in case if it is too small, the algorithm will be
near to Hard C-Means Clustering (HCM). If the condition c>1
holds true, the ¢ will be far less than total number of cluster
samples.

4 ADAPTIVE NEURO FuUzzyY INFERENCE

The adaptive neuro fuzzy inference system is reasoning fuzzy
system that is trained by neural network for computation of
membership function parameters. The method tracks the in-
put output data as a non-linear relation with inputs x,y and f
as output.

Layer Layer 2 Layer Layer Layer
A
X
A
f
B
Y
B

Figure 2: Adaptive Neuro Fuzzy Inference System Architecture [33]

By the training of system to a number of epochs the
knowledge base is developed. The fuzzy inference system is
defined in following steps for minimization of error rate.
Layer 1: In this layer the degree of membership is upgraded in
reference to the parameters of fuzzy sets [34].

1= py(x),i=12 ©)

L= .U'Bi- (j’:},f. = 1!2 (10)

Layer 2: In this layer the fuzzy value of inputs is calculated. In
the range [0, 1] the membership value of fuzzy set is deter-
mined [34].

w; = “Ai[:x)ﬂsi (j})!i = 1!2 (11)

Layer 3: this layer normalizes the firing strength [34].

Wi

W, = i=12
L “_.1+“.2’ ’

(12)

295

Layer 4: the input of this layer is the fuzzy output of layer 2
while the output is a single number. The parameters are de-
fined by eq. 13 [35].

wif, =wi(px+qy+mn) (13)
5. Layer 5: the overall output is computed by summation of
each incoming signal [34].
Liwif; = Lo

Ziw; (14)

Data Set of NASA (100*21) values

v

Preprocessing (100*2) by Mean and

Standard Deviation

v

FCM (Formation of 25 Centers)

v

FIS generation of Data from FCM

v

Train FIS (Training of data using Feed

forward Neural Network)

v

Trained FIS (This FIS takes the input
and provides Result)

Fig 3. Flow Diagram of Adaptive Neuro Fuzzy C-Means Clustering

5 EXPERIMENTAL SETUP

Software fault detection by Fuzzy C-Means Clustering:

The dimension of data in matrix form is (100x21) indicating
the 100 cases of faulty/non-faulty modules with 21 properties
of each. The methodology pre-process the data (calculation of
standard deviation and mean) is done for each software
stream. This reduces the data matrix to (100x21) i.e. 100 cases
with 2 properties of each.

In original dataset Class Distribution: the class value (defects)
is discrete

% false: 77 =6.94%
% true: 1032 =93.05%

The pre-processed data is fed to Fuzzy C-Means clustering to
obtain 25 clusters. The first cluster of data is labeled as non-
faulty while remaining 24 fields indicates faulty data. Fuzzy
C-Means finds the location of cluster center and assigns each
stream to a cluster centre.For testing the standard deviation

IJSER © 2014
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 296

ISSN 2229-5518

and mean of stream is calculated, assigned to cluster from
which it shows minimum distance. The stream is classified as
faulty if the cluster is faulty else vice-versa.

Software Fault Detection Using Adaptive Neuro-Fuzzy C-
Means Clustering;:

The dimension of data in matrix is again (100x21) which indi-
cated 100 cases with 21 properties each. The pre-processing of
data reduces the matrix to the order (100x2) i.e. 100 cases with
2 properties of each.On basis of above a fuzzy inference sys-
tem is generated using FCM. Both systems till this point share
same level of accuracy. This inference system is fed to feed
forward neural network with training data. In training stage
neural network modifies the structure of fuzzy inference sys-
tem to obtain high level of accuracy.

6 RESULTS AND COCLUSION

x 10° Data Input (PC1 database with attributes)
3 T T T T T T T T

25 A

15 A

o]

Y- A?O/L/V /W\

o 10 20 3 50 60 70 80 90 100

Fig. 4. Graphical representation of PC1 data distribution of faulty and non-
faulty modules

In training dataset taken as input for Class Distribution: the
class value (defects) is discrete in nature.

% data with positive attribute: 23 =23%

% data with negative attribute: 77 =77%

input e outputmt output
oy, S
TR
Sshiu
ST
) ¢

Logical Operstions

Fig. 5. Adaptive Neuro-Fuzzy Inference Model for PC1 Dataset with 3
Rules.

plot poinds: 181

FIS Varigbles

Current Varinble Current Membership Function (ciick on MF fo select)
Name inputl Name inimt
Type ingut Type goelimt -
Params P
[1.4582+008 2 7]
Range 7 2.817e+008]
Dispilay Range [7 2.817e+008] el Close | ‘
Ready ‘

Fig.6. Membership Function Plot of Fuzzy Inference System

FIS Variables

\ g
VYAY .

nputt output

plot points: 181
T

Membership function piols.
T

maE

nput varable “inputi*

Current Yariable: Current Membership Function (click on MF to select)
Mame inputt Name inmf1

Type input Tyre geelmf =
Rangs 17 20170/ 0068 Params [1.458e+006 -0,3514 6.144]

Display Range [7 2.917¢+006] Help | Close | |
Opening FIS from workspace |

Fig.7. Membership Function Plot of Adaptive Neuro Fuzzy Inference Sys-
tem

TABLE 2

COMPARATIVE TABLE BASED ON SIMULATION FACTORS FOR Fuzzy
C-MEANS AND ADAPTIVE NEURO Fuzzy C-MEANS CLUSTERING

Fuzzy C- Adaptive
Means Neuro Fuzzy
C-Means
Accuracy 77% 91%
Reliability 72.98% 73.98%
RMSE 0.068 0.09
MAE 0.23 0.13

This paper empirically evaluates and compares the perfor-
mance of Fuzzy C-Means clustering technique and adaptive
Neuro-Fuzzy C-Means clustering for software fault prediction.
The platform for the testing is MATLAB 2010A on the PC1
testing database. The proposed Adaptive Neuro-Fuzzy C-
Means Clustering based prediction technique shows 91% ac-
curacy in results. We observe that the implementation that has
achieved a better performance.C-Means clustering for the pre-
diction of faulty prone classes. It can be further accomplished

IJSER © 2014
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014

ISSN 2229-5518
that the Adaptive Neuro-Fuzzy C-Means clustering is satisfac-
tory in finding the faulty/fault-free area.

REFERENCES

(1
(2]

3]

4]

5]

(6]

(8]

[

10]

(1]

(12]

(13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]

M. R. Lyu, Handbook of software Reliability Engineering IEEE Computer
Society Press, McGraw Hill, 1996.

F. G. Sayward A. J. Perlis and M. Shaw, Software Metrics: An Analysis and
Evaluation, MIT Press, Cambridge, MA, 1981.

V. Y. Shen, T.Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying errorprone
software —an empirical study,” IEEE Trans. on Software Engineering, vol. SE-
11, pp. 317-323, April 1985.

S. G. Crawford, A. A. McIntosh, and D. Pregibon, “ An analysis of static met-
rics and faults in C software,” J. Syst. Sofyware, vol. 5, pp. 2748, 1985.

Bose, SK., Presenting a Novel Neural Network Architecture for Membrane
Protein Prediction, Intelligent Engineering Systems, 2006. INES '06. Proceed-
ings. International Conference

Attarzadeh, I, Proposing an Enhanced Artificial Neural Network Prediction
Model to Improve the Accuracy in Software Effort Estimation, Computational
Intelligence, Communication Systems and Networks (CICSyN), 2012 Fourth
International Conference

Yuan Chen,Research on software defect prediction based on data mining,
Computer and Automation Engineering (ICCAE), 2010 The 2nd International
Conference on (Volume:1)

N. E. Fenton and M. Neil. A critique of software defect prediction models.
IEEE, Transactions on Software Engineering, 25(5):675-689, 1999.

N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a
complex software system. IEEE Transactions on Software Engineering,
26(8):797-814, 2000

Khoshgoftaar TM, Allen EB, Ross FD, Munikoti R, Goel N, Nandi A (1997)
Predicting fault-prone modules with case-based reasoning. The Eighth Inter-
national Symposium on Software Engineering (ISSRE '07). IEEE Computer
Society, pp 27-35

Thwin, M. M.; Quah, T. Application of Neural Networks for Software Quality
Prediction using Object-oriented Metrics. // ICSM 2003. / Amsterdam, The
Netherlands, 2003, pp. 113-122.

Quah, T. S. Estimating Software Readiness using Predictive Models. // In-
formation Sciences, 179, 4(2009), pp. 430-445.

Kanmani S,Uthariaraj V. R. Sankaranarayanan V, Thambidurai, P. Object-
oriented Software Fault Prediction using Neural Networks.Information and
Software Technology, 49, 5(2007), pp. 483-492.

Evett, M.; Khoshgoftaar, T.; Chien, P.; Allen, E. GP-based Software Quality
Prediction. // Proceedings of the 3rd Annual Genetic Programming Confer-
ence / San Francisco, CA, 1998, pp. 60-65.

Guo, L; Cukic, B;; Singh, H. Predicting Fault Prone Modules by the Demp-
ster-Shafer Belief Networks. // Proceedings of the 18th IEEE Int'l Conf. on
Automated Software Eng. / Montreal, Canada, 2003, pp. 249-252.

Menvzies, T.; Greenwald, J; Frank, A. Data Mining Static Code Attributes to
Learn Defect Predictors. // IEEE Transactions on Software Engineering, 33,
1(2007), pp. 2-13.

Zhang, M. L; Pefia,]. M,; Robles, V. Feature Selection for Multi-label Naive
Bayes Classification. // Information Sciences, 179, 19(2009), pp. 3218-3229.
Khoshgoftaar, T. M.; Seliya, N. Software Quality Classification Modeling
using the SPRINT Decision Tree Algorithm. // Proc.of the 4th IEEE Int'l
Conf. on Tools with Al. / Washington, DC, 2002, pp. 365-374.

Catal, C; Diri, B. Investigating the Effect of Dataset Size, Metrics Sets, and
Feature Selection Techniques on Software Fault Prediction Problem. // In-
formation Sciences, 179, 3(2009), pp. 1040-1058.

Elish, K. O, Elish, M. O. Predicting Defect-Prone Software Modules using

IJSER © 2014

(21]

(2]

(23]

(24

(5]

26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]

297

Support Vector Machines. // Journal of Systems and Software, 81, 5(2008),
pp- 649-660.

Gondra, I. Applying Machine Learning to Software Faultproneness Predic-
tion. / / Journal of Systems and Software, 81, 2(2008), pp. 186-195.

El Emam, K; Benlarbi, S.; Goel, N.; Rai, S. Comparing Case-based Reasoning
Classifiers for Predicting High Risk Software Components. // Journal of Sys-
tems and Software, 55, 3(2001), pp. 301-320.

Vandecruys, O.; Martens, D.; Baesens, B.; Mues, C; De Backer, M.; Haesen, R.
Mining Software Repositories for Comprehensible Software Fault Prediction
Models. // Journal of Systems and Software, 81, 5(2008), pp. 823-839.

Yuan, X,; Khoshgoftaar, T. M.; Allen, E. B, Ganesan, K. An Application of
Fuzzy Clustering to Software Quality Prediction. // Proc. of the 3rd IEEE
Symp. on Application-Specific Systems and Software Eng, Technology, /
Washington, DC, 2000, pp. 85-90.

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design
metrics as quality indicators. IEEE Trans Softw Eng 22(10):751-761.
doi10.1109/32.544352

Yue Jiang, Bojan Cukic, Tim Menzies, “Fault Prediction using Early Lifecycle
Data”. Lane Department of Computer Science and Electrical Engineer-
ing,West Virginia University, Morgantown, WV 26506, USA

Witten, LH. and Frank, E.,, Data Mining: Practical Machine Learning Tools
and Techniques (San Francisco, CA: Morgan Kaufmann), 2nd edition (2005)
Gaines, B.R,, Compton, P.: Induction of Ripple-Down Rules Applied to Mod-
eling Large Databases. J. Intell. Inf. Syst. 5(3), 211-228 (1995)

Hassan Najadat and Izzat Alsmadi, Enhance Rule Based Detection for Soft-
ware Fault Prone Modules. International Journal of Software Engineering and
Its Applications Vol. 6, No. 1, January, 2012

Zhiwei Guo, Chengging Yuan, Peng Liu, “Study on Identification Model of
Cylinder Liner-Piston Ring Using Vibration Analysis Based on Fuzzy C-
means Clustering” The Open Mechanical Engineering Journal, 2012, 6, (Suppl
2: M2) 126-1321874-155X

James C. Bezdek, Robert Ehrlich, William Full, “FCM: The Fuzzy C-Means
Clustering Algorithm” Computers & Geosciences Vol. 10, No. 2-3, Pp. 191-
203,1984.

Pejman Tahmasebi, Ardeshir Hezarkhani, Application of Adaptive Neuro-
Fuzzy Inference System for Grade Estimation; Case Study, Sarcheshmeh
Porphyry Copper Deposit, Kerman, Iran” Australian Journal of Basic and
Applied Sciences, 4(3): 408-420, 2010

Ahmed A. M. Emam, Eisa Bashier M. Tayeb, A. Taifour Al, Ammar Hassan
Habiballh, “ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IDENTI-
FICATION OF AN INDUCTION MOTOR” European Journal of Science and
Engineering Vol. 1, Issue 1,2013.

M. H. Olyaee, H. Abasi, M. Yaghoobi, “Using Hierarchical Adaptive Neuro
Fuzzy Systems And Design Two New Edge Detectors In Noisy Images” Vol-
ume 2013, Year 2013 Article ID jsca-00030, 10 Pages doi:10.5899/2013 /jsca-
00030.

http://www.ijser.org

http://www.ijser.org/

	1 Introduction
	2 Related Review
	3 Methodology
	3.1 Data Pre-processing
	3.2 Fuzzy C-Means Clustering

	4 Adaptive Neuro Fuzzy Inference
	5 Experimental setup
	6 Results and Coclusion
	References

